Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly
نویسندگان
چکیده
RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions.
منابع مشابه
LIM kinase 1 modulates cortical actin and CXCR4 cycling and is activated by HIV-1 to initiate viral infection.
Almost all viral pathogens utilize a cytoskeleton for their entry and intracellular transport. In HIV-1 infection, binding of the virus to blood resting CD4 T cells initiates a temporal course of cortical actin polymerization and depolymerization, a process mimicking the chemotactic response initiated from chemokine receptors. The actin depolymerization has been suggested to promote viral intra...
متن کاملUNC-87, a calponin-related protein in C. elegans, antagonizes ADF/cofilin-mediated actin filament dynamics.
Stabilization of actin filaments is critical for supporting actomyosin-based contractility and for maintaining stable cellular structures. Tropomyosin is a well-characterized ubiquitous actin stabilizer that inhibits ADF/cofilin-dependent actin depolymerization. Here, we show that UNC-87, a calponin-related Caenorhabditis elegans protein with seven calponin-like repeats, competes with ADF/cofil...
متن کاملRegulation of the Cortical Actin Cytoskeleton in Budding Yeast by Twinfilin, a Ubiquitous Actin Monomer-sequestering Protein
Here we describe the identification of a novel 37-kD actin monomer binding protein in budding yeast. This protein, which we named twinfilin, is composed of two cofilin-like regions. In our sequence database searches we also identified human, mouse, and Caenorhabditis elegans homologues of yeast twinfilin, suggesting that twinfilins form an evolutionarily conserved family of actin-binding protei...
متن کاملActin-depolymerizing factor and cofilin-1 play overlapping roles in promoting rapid F-actin depolymerization in mammalian nonmuscle cells.
Actin-depolymerizing factor (ADF)/cofilins are small actin-binding proteins found in all eukaryotes. In vitro, ADF/cofilins promote actin dynamics by depolymerizing and severing actin filaments. However, whether ADF/cofilins contribute to actin dynamics in cells by disassembling "old" actin filaments or by promoting actin filament assembly through their severing activity is a matter of controve...
متن کاملCoactosin-Like 1 Antagonizes Cofilin to Promote Lamellipodial Protrusion at the Immune Synapse
Actin depolymerizing factor-homology (ADF-H) family proteins regulate actin filament dynamics at multiple cellular locations. Herein, we have investigated the function of the ADF-H family member coactosin-like 1 (COTL1) in the regulation of actin dynamics at the T cell immune synapse (IS). We initially identified COTL1 in a genetic screen to identify novel regulators of T cell activation, and s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016